Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.910
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591869

RESUMO

In this study, our goal was to synthesize novel aryl tacrine derivatives and assess their potential as anticancer, antibacterial agents, and enzyme inhibitors. We adopted a two-step approach, initiating with the synthesis of dibromotacrine derivatives 3 and 4 through the Friedlander reaction. These intermediates underwent further transformation into diarylated tacrine derivatives 3a-e and 4a-e using a Suzuki-Miyaura cross-coupling reaction. Thorough characterization of these novel diarylated tacrines was achieved using various spectroscopic techniques. Our findings highlighted the potent anticancer effects of these innovative compounds across a range of cancer cell lines, including lung, gynecologic, bone, colon, and breast cancers, while demonstrating low cytotoxicity against normal cells. Notably, these compounds surpassed the control drug, 5-Fluorouracil, in terms of antiproliferative activity in numerous cancer cell lines. Moreover, our investigation included an analysis of the inhibitory properties of these novel compounds against various microorganisms and cytosolic carbonic anhydrase enzymes. The results suggest their potential for further exploration as cancer-specific, enzyme inhibitory, and antibacterial therapeutic agents. Notably, four compounds, namely, 5,7-bis(4-(methylthio)phenyl)tacrine (3d), 5,7-bis(4-(trifluoromethoxy)phenyl)tacrine (3e), 2,4-bis(4-(trifluoromethoxy)phenyl)-7,8,9,10-tetrahydro-6H-cyclohepta[b]quinolin-11-amine (4e), and 6,8-dibromotacrine (3), emerged as the most promising candidates for preclinical studies.


Assuntos
Antineoplásicos , Neoplasias , Feminino , Humanos , Tacrina/farmacologia , Tacrina/química , Antifúngicos/farmacologia , Anticonvulsivantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Estrutura Molecular
2.
Bioorg Med Chem ; 101: 117649, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401458

RESUMO

Simple and scalable synthetic approach was used for the preparation of thirteen novel tacrine derivatives consisting of tacrine and N-aryl-piperidine-4-carboxamide moiety connected by a five-methylene group linker. An anti-Alzheimer disease (AD) potential of newly designed tacrine derivatives was evaluated against two important AD targets, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro pharmacological evaluation showed strong ChE inhibitory activity of all compounds, with IC50 values ranging from 117.5 to 455 nM for AChE and 34 to 324 nM for BuChE. As a representative of the series with the best cytotoxicity / ChE inhibitory activity ratio, expressed as the selectivity index (SI), 2-chlorobenzoyl derivative demonstrated mixed-type inhibition on AChE and BuChE, suggesting binding to both CAS and PAS of the enzymes. It also exhibited antioxidant capacity and neuroprotective potential against amyloid-ß (Aß) toxicity in the culture of neuron-like cells. In-depth computational analysis corroborated well with in vitro ChE inhibition, illuminating that all compounds exhibit significant potential in targeting both enzymes. Molecular dynamics (MD) simulations revealed that 2-chlorobenzoyl derivative, created complexes with AChE and BuChE that demonstrated sufficient stability throughout the observed MD simulation. Computationally predicted ADME properties indicated that these compounds should have good blood-brain barrier (BBB) permeability, an important factor for CNS-targeting drugs. Overall, all tested compounds showed promising pharmacological behavior, highlighting the multi-target potential of 2-chlorobenzoyl derivative which should be further investigated as a new lead in the drug development process.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tacrina/química , Clorobenzoatos/química , Clorobenzoatos/farmacologia
3.
Drug Des Devel Ther ; 18: 549-566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419811

RESUMO

Introduction: Tacrine, an FDA-approved acetylcholinesterase inhibitor, has shown efficacy in treating Alzheimer's disease, but its clinical use is limited by hepatotoxicity. This study investigates the protective effects of red ginseng against tacrine-induced hepatotoxicity, focusing on oxidative stress. Methods: A network depicting the interaction between compounds and targets was constructed for RG. Effect of RG was determined by MTT and FACS analysis with cells stained by rhodamine 123. Proteins were extracted and subjected to immunoblotting for apoptosis-related proteins. Results: The outcomes of the network analysis revealed a significant association, with 20 out of 82 identified primary RG targets aligning with those involved in oxidative liver damage including notable interactions within the AMPK pathway. in vitro experiments showed that RG, particularly at 1000µg/mL, mitigated tacrine-induced apoptosis and mitochondrial damage, while activating the LKB1-mediated AMPK pathway and Hippo-Yap signaling. In mice, RG also protected the liver injury induced by tacrine, as similar protective effects to silymarin, a well-known drug for liver toxicity protection. Discussion: Our study reveals the potential of RG in mitigating tacrine-induced hepatotoxicity, suggesting the administration of natural products like RG to reduce toxicity in Alzheimer's disease treatment.


Assuntos
Doença de Alzheimer , Doença Hepática Induzida por Substâncias e Drogas , Panax , Camundongos , Animais , Tacrina/farmacologia , Tacrina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/metabolismo , Farmacologia em Rede , Proteínas Quinases Ativadas por AMP , Inibidores da Colinesterase/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
4.
Eur J Med Chem ; 266: 116130, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218127

RESUMO

Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.


Assuntos
Doença de Alzheimer , Doença Hepática Induzida por Substâncias e Drogas , Fármacos Neuroprotetores , Piperidinas , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de N-Metil-D-Aspartato , Tacrina/química , Inibidores da Colinesterase/química , Sítios de Ligação , Colinesterases , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico
5.
Drug Des Devel Ther ; 18: 133-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283137

RESUMO

Purpose: Alzheimer's disease (AD) is the most common neurodegenerative disease, and its multifactorial nature increases the difficulty of medical research. To explore an effective treatment for AD, a series of novel tacrine-selegiline hybrids with ChEs and MAOs inhibitory activities were designed and synthesized as multifunctional drugs. Methods: All designed compounds were evaluated in vitro for their inhibition of cholinesterases (AChE/BuChE) and monoamine oxidases (MAO-A/B) along with their blood-brain barrier permeability. Then, further biological activities of the optimizing compound 7d were determined, including molecular model analysis, in vitro cytotoxicity, acute toxicity studies in vivo, and pharmacokinetic and pharmacodynamic property studies in vivo. Results: Most synthesized compounds demonstrated potent inhibitory activity against ChEs/MAOs. Particularly, compound 7d exhibited good and well-balanced activity against ChEs (hAChE: IC50 = 1.57 µM, hBuChE: IC50 = 0.43 µM) and MAOs (hMAO-A: IC50 = 2.30 µM, hMAO-B: IC50 = 4.75 µM). Molecular modeling analysis demonstrated that 7d could interact simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE in a mixed-type manner and also exhibits binding affinity towards BuChE and MAO-B. Additionally, 7d displayed excellent permeability of the blood-brain barrier, and under the experimental conditions, it elicited low or no toxicity toward PC12 and BV-2 cells. Furthermore, 7d was not acutely toxic in mice at doses up to 2500 mg/kg and could improve the cognitive function of mice with scopolamine-induced memory impairment. Lastly, 7d possessed well pharmacokinetic characteristics. Conclusion: In light of these results, it is clear that 7d could potentially serve as a promising multi-functional drug for the treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Taurina/análogos & derivados , Camundongos , Animais , Tacrina/farmacologia , Tacrina/química , Tacrina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Colinesterases/metabolismo , Selegilina/farmacologia , Selegilina/uso terapêutico , Monoaminoxidase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/química , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Relação Estrutura-Atividade , Peptídeos beta-Amiloides
6.
Org Biomol Chem ; 22(4): 790-804, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38167698

RESUMO

A mild and greener protocol was developed for C-C (C(sp3)-H functionalization) and C-N bond formation to synthesize functionalized tacrine derivatives using a biodegradable and reusable deep eutectic solvent [(DES) formed from N,N'-dimethyl urea and L-(+)-tartaric acid in a 3 : 1 ratio at 80 °C]. The condensation of 9-chloro-1,2,3,4-tetrahydroacridines with a variety of aromatic aldehydes gave unsaturated compounds via C(sp3)-H functionalization (at the C-4 position) with good yields. The substituted N-aryl tacrine derivatives were obtained from the condensed products of 9-chloro-1,2,3,4-tetrahydroacridine with substituted anilines via the nucleophilic substitution reaction (SN2 type) in the DES with good yields. This is the first example of C4-functionalized tacrine derivatives, highlighting the dual capacity of the DES to serve as both a catalyst and a solvent for facilitating C-N bond formation on acridine. The generated compounds were evaluated for acetyl/butyrylcholinesterase (AChE/BChE) and α-glucosidase inhibitory activity. It was found that the majority of the compounds reported here were significantly more potent inhibitors than the standard inhibitor tacrine (AChE IC50 = 203.51 nM; BChE IC50 = 204.01 nM). Among the compounds screened, 8m was found to be more potent with IC50 = 125.06 nM and 119.68 nM towards AChE and BChE inhibition respectively. The α-glucosidase inhibitory activity of the compounds was tested using acarbose as a standard drug (IC50 = 23 100 nM) and compound 8j was found to be active with IC50 = 19 400 nM.


Assuntos
Butirilcolinesterase , Tacrina , Tacrina/química , Butirilcolinesterase/metabolismo , alfa-Glucosidases , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
7.
Bioorg Chem ; 143: 107010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056387

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and deficits in cognitive domains. Low choline levels, oxidative stress, and neuroinflammation are the primary mechanisms implicated in AD progression. Simultaneous inhibition of acetylcholinesterase (AChE) and reactive oxygen species (ROS) production by a single molecule may provide a new breath of hope for AD treatment. Here, we describe donepezil-tacrine hybrids as inhibitors of AChE and ROS. Four series of derivatives with a ß-amino alcohol linker were designed and synthesized. In this study, the target compounds were evaluated for their ability to inhibit AChE and butyrylcholinesterase (BuChE) in vitro, using tacrine (hAChE, IC50 = 305.78 nM; hBuChE, IC50 = 56.72 nM) and donepezil (hAChE, IC50 = 89.32 nM; hBuChE, IC50 = 9137.16 nM) as positive controls. Compound B19 exhibited an excellent and balanced inhibitory potency against AChE (IC50 = 30.68 nM) and BuChE (IC50 = 124.57 nM). The cytotoxicity assays demonstrated that the PC12 cell viability rates of compound B19 (84.37 %) were close to that of tacrine (87.73 %) and donepezil (79.71 %). Potential therapeutic effects in AD were evaluated using the neuroprotective effect of compounds against H2O2-induced toxicity, and compound B19 (68.77 %) exhibited substantially neuroprotective activity at the concentration of 25 µM, compared with the model group (30.34 %). Furthermore, compound B19 protected PC12 cells from H2O2-induced apoptosis and ROS production. These properties of compound B19 suggested that it was a multi-functional agent with AChE inhibition, anti-oxidative, anti-inflammatory activities, and low toxicity and that it deserves further investigation as a promising agent for AD treatment.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Ratos , Tacrina/farmacologia , Tacrina/uso terapêutico , Donepezila/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
8.
Neurol Sci ; 45(2): 417-430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37843690

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia. The early diagnosis of AD is an important factor for the control of AD progression. Electroencephalography (EEG) can be used for early diagnosis of AD. Acetylcholinesterase inhibitors (AChEIs) are also used for the amelioration of AD symptoms. In this systematic review, we reviewed the effect of different AChEIs including donepezil, rivastigmine, tacrine, physostigmine, and galantamine on EEG patterns in patients with AD. METHODS: PubMed electronic database was searched and 122 articles were found. After removal of unrelated articles, 24 articles were selected for the present study. RESULTS: AChEIs can decrease beta, theta, and delta frequency bands in patients with AD. However, conflicting results were found for alpha band. Some studies have shown increased alpha frequency, while others have shown decreased alpha frequency following treatment with AChEIs. The only difference was the type of drug. CONCLUSIONS: We found that studies reporting the decreased alpha frequency used donepezil and galantamine, while studies reporting the increased alpha frequency used rivastigmine and tacrine. It was suggested that future studies should focus on the effect of different AChEIs on EEG bands, especially alpha frequency in patients with AD, to compare their effects and find the reason for their different influence on EEG patterns. Also, differences between the effects of AChEIs on oligodendrocyte differentiation and myelination may be another important factor. This is the first article investigating the effect of different AChEIs on EEG patterns in patients with AD.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Donepezila/uso terapêutico , Rivastigmina/farmacologia , Rivastigmina/uso terapêutico , Galantamina/farmacologia , Galantamina/uso terapêutico , Acetilcolinesterase/uso terapêutico , Tacrina/uso terapêutico , Piperidinas/uso terapêutico , Indanos/uso terapêutico , Fenilcarbamatos/uso terapêutico
9.
Bioorg Chem ; 143: 107026, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103330

RESUMO

A series of novel hybrid compounds were designed, synthesized, and utilized as multi-target drugs to treat Alzheimer's disease (AD) by connecting capsaicin and tacrine moieties. The biological assays indicated that most of these compounds demonstrated strong inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities with IC50 values in the nanomolar, as well as good blood-brain barrier permeability. Among the synthesized hybrids, compound 5s displayed the most balanced inhibitory effect on hAChE (IC50 = 69.8 nM) and hBuChE (IC50 = 68.0 nM), and exhibited promising inhibitory activity against ß-secretase-1 (BACE-1) (IC50 = 3.6 µM). Combining inhibition kinetics and molecular model analysis, compound 5s was shown to be a mixed inhibitor affecting both the catalytic active site (CAS) and peripheral anionic site (PAS) of hAChE. Additionally, compound 5s showed low toxicity in PC12 and BV2 cell assays. Moreover, compound 5s demonstrated good tolerance at the dose of up to 2500 mg/kg and exhibited no hepatotoxicity at the dose of 3 mg/kg in mice, and it could effectively improve memory ability in mice. Taken together, these findings suggest that compound 5s is a promising and effective multi-target agent for the potential treatment of AD.


Assuntos
Doença de Alzheimer , Tacrina , Camundongos , Animais , Tacrina/química , Doença de Alzheimer/tratamento farmacológico , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides , Simulação de Acoplamento Molecular , Desenho de Fármacos , Relação Estrutura-Atividade
10.
Bioorg Chem ; 142: 106916, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37913584

RESUMO

Development of Multitarget-Directed Ligands (MTDLs) is a promising approach to combat the complex etiologies of Alzheimer's disease (AD). Herein we report the design, synthesis, and characterization of a new series of 1,4-bisbenzylpiperazine-2-carboxylic acid derivatives 3-5(a-g), 7a-f, 8a-s, and their piperazine-2-yl-1,3,4-oxadiazole analogs 6a-g. In vitro inhibitory effect against Electrophorus electricus acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) from Equine serum was evaluated using modified Ellman's method, considering donepezil and tacrine as reference drugs. Lineweaver-Burk plot analysis of the results proved competitive inhibition of AChE and BChE with Ki values, in low micromolar range. The free carboxylic acid series 4a-g showed enhanced selectivity for AChE. Hence, 4c, 1,4-bis (4-chlorobenzyl)-piperazinyl-2-carboxylic acid), was the most active member of this series (Ki (AChE) = 10.18 ± 1.00 µM) with clear selectivity for AChE (SI âˆ¼ 17.90). However, the hydroxamic acids 7a-f and carboxamides 8a-s congeners were more potent and selective inhibitors of BChE (SI âˆ¼ 5.38 - 21862.5). Extraordinarily, 1,4-bis (2-chlorobenzyl)-piperazinyl-2-hydroxamic acid 7b showed promising inhibitory activity against BChE enzyme (Ki = 1.6 ± 0.08 nM, SI = 21862.5), that was significantly superior to that elicited by donepezil (Ki = 12.5 ± 2.6 µM) and tacrine (Ki = 17.3 ± 2.3 nM). Cytotoxicity assessment of 4c and 7b, on human neuroblastoma (SH-SY5Y) cell lines, revealed lower toxicity than staurosporine and was nearly comparable to that of donepezil. Molecular docking and molecular dynamics simulation afforded unblemished insights into the structure-activity relationships for AChE and BChE inhibition. The results showed stable binding with fair H-bonding, hydrophobic and/or ionic interactions to the catalytic and peripheral anionic sites of the enzymes. In silico predicted ADME and physicochemical properties of conjugates showed good CNS bioavailability and safety parameters. In this regard, compound (7b) might be considered as a promising inhibitor of BChE with an innovative donepezil-based anti-Alzheimer activity. Further assessments of the most potent AChE and BChE inhibitors as potential MTDLs anti-Alzheimer's agents are under investigation with our research group and will be published later.


Assuntos
Doença de Alzheimer , Neuroblastoma , Animais , Cavalos , Humanos , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Donepezila/farmacologia , Acetilcolinesterase/metabolismo , Tacrina/farmacologia , Simulação de Acoplamento Molecular , Piperazinas/farmacologia , Ácidos Carboxílicos , Relação Estrutura-Atividade , Doença de Alzheimer/tratamento farmacológico , Simulação de Dinâmica Molecular , Estrutura Molecular
11.
Eur J Med Chem ; 265: 116071, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157596

RESUMO

In this study, a series of carbamate derivatives incorporating multifunctional carrier scaffolds were designed, synthesized, and evaluated as potential therapeutic agents for Alzheimer's disease (AD). We used tacrine to modify the aliphatic substituent, and employed rivastigmine, indole and sibiriline fragments as carrier scaffolds. The majority of compounds exhibited good inhibitory activity for cholinesterase. Notably, compound C7 with sibiriline fragment exhibited potent inhibitory activities against human acetylcholinesterase (hAChE, IC50 = 30.35 ± 2.07 nM) and human butyrylcholinesterase (hBuChE, IC50 = 48.03 ± 6.41 nM) with minimal neurotoxicity. Further investigations have demonstrated that C7 exhibited a remarkable capacity to safeguard PC12 cells against H2O2-induced apoptosis and effectively suppressed the production of reactive oxygen species (ROS). Moreover, in an inflammation model of BV2 cells induced by lipopolysaccharide (LPS), C7 effectively attenuated the levels of pro-inflammatory cytokines. After 12 h of dialysis, C7 continued to exhibit an inhibitory effect on cholinesterase activity. An acute toxicity test in vivo demonstrated that C7 exhibited a superior safety profile and no hepatotoxicity compared to the parent nucleus tacrine. In the scopolamine-induced AD mouse model, C7 (20 mg/kg) significantly reduced cholinesterase activity in the brain of the mice. C7 was tested in a pharmacological AD mouse model induced by Aß1-42 and attenuated memory deficits at doses as low as 5 mg/kg. The pseudo-irreversible cholinesterase inhibitory properties and multifunctional therapeutic attributes of C7 render it a promising candidate for further investigation in the treatment of AD.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Ratos , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Butirilcolinesterase/metabolismo , Tacrina/farmacologia , Tacrina/uso terapêutico , Acetilcolinesterase/metabolismo , Carbamatos/farmacologia , Peróxido de Hidrogênio/farmacologia , Peptídeos beta-Amiloides , Barreira Hematoencefálica/metabolismo , Desenho de Fármacos , Relação Estrutura-Atividade
12.
ACS Chem Biol ; 18(9): 1993-2002, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37622522

RESUMO

Tacrine was withdrawn from clinical use as a drug against Alzheimer's disease in 2013, mainly due to drug-induced liver injury. The culprit of tacrine-associated hepatotoxicity is believed to be the 7-OH-tacrine metabolite, a possible precursor of quinone methide (Qmeth), which binds to intracellular -SH proteins. In our study, several different animal and human models (liver microsomes, primary hepatocytes, and liver slices) were used to investigate the biotransformation and hepatotoxicity of tacrine and its 7-substituted analogues (7-methoxy-, 7-phenoxy-, and 7-OH-tacrine). Our goal was to find the most appropriate in vitro model for studying tacrine hepatotoxicity and, through rational structure modifications, to develop derivatives of tacrine that are less prone to Qmeth formation. Our results show that none of animal models tested accurately mimic human tacrine biotransformation; however, the murine model seems to be more suitable than the rat model. Tacrine metabolism was overall most accurately mimicked in three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs). In this system, tacrine and 7-methoxytacrine were hydroxylated to 7-OH-tacrine, whereas 7-phenoxytacrine formed, as expected, only trace amounts. Surprisingly, however, our study showed that 7-OH-tacrine was the least hepatotoxic (7-OH-tacrine < tacrine < 7-methoxytacrine < 7-phenoxytacrine) even after doses had been adjusted to achieve the same intracellular concentrations. The formation of Qmeth-cysteine and Qmeth-glutathione adducts after human liver microsome incubation was confirmed by all of the studied tacrine derivatives, but these findings were not confirmed after incubation with 3D PHH spheroids. Therefore, the presented data call into question the suggested previously hypothesized mechanism of toxicity, and the results open new avenues for chemical modifications to improve the safety of novel tacrine derivatives.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Indolquinonas , Metanfetamina , Humanos , Animais , Camundongos , Ratos , Tacrina/toxicidade , Biotransformação
13.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569630

RESUMO

Great effort has been devoted to the synthesis of novel multi-target directed tacrine derivatives in the search of new treatments for Alzheimer's disease (AD). Herein we describe the proof of concept of MBA121, a compound designed as a tacrine-ferulic acid hybrid, and its potential use in the therapy of AD. MBA121 shows good ß-amyloid (Aß) anti-aggregation properties, selective inhibition of human butyrylcholinesterase, good neuroprotection against toxic insults, such as Aß1-40, Aß1-42, and H2O2, and promising ADMET properties that support translational developments. A passive avoidance task in mice with experimentally induced amnesia was carried out, MBA121 being able to significantly decrease scopolamine-induced learning deficits. In addition, MBA121 reduced the Aß plaque burden in the cerebral cortex and hippocampus in APPswe/PS1ΔE9 transgenic male mice. Our in vivo results relate its bioavailability with the therapeutic response, demonstrating that MBA121 is a promising agent to treat the cognitive decline and neurodegeneration underlying AD.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Tacrina/farmacologia , Tacrina/uso terapêutico , Butirilcolinesterase , Peróxido de Hidrogênio/uso terapêutico , Peptídeos beta-Amiloides , Camundongos Transgênicos , Modelos Animais de Doenças , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico
14.
Bioorg Med Chem ; 91: 117419, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487339

RESUMO

Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Tacrina/farmacologia , Tacrina/química , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Peptídeos beta-Amiloides
15.
Bioorg Chem ; 139: 106704, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37453239

RESUMO

An efficient [4 + 2] cyclization protocol to synthesize a series of twelve examples of 1,2,3-triazolo[4,5-b]aminoquinolines (5) as novel structurally modified tacrines was obtained by reacting readily accessible precursors (i.e., 3-alky(aryl)-5-amino-1,2,3-triazole-4-carbonitriles (3)) and selected cycloalkanones (4) of five-, six-, and seven-membered rings. We evaluated the AChE and BChE inhibitory activity of the novel modified tacrines 5, and the compound derivatives from cyclohexanone (4b) showed the best AChE and BChE inhibitory activities. Specifically, 1,2,3-triazolo[4,5-b]aminoquinolines 5bb obtained from 3-methyl-carbonitrile (3b) showed the highest AChE (IC50 = 12.01 µM), while 5ib from 3-sulfonamido-carbonitrile (3i) was the most significant inhibitor for BChE (IC50 = 1.78 µM). In general, the inhibitory potency of compound 5 was weaker than the pure tacrine reference, and our findings may help to design and develop novel anticholinesterase drugs based on modified tacrines.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Tacrina/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores da Colinesterase/química , Estrutura Molecular
16.
Chem Biodivers ; 20(8): e202300587, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37332056

RESUMO

The use of privileged scaffolds has proven beneficial for generating novel bioactive scaffolds in drug discovery program. Chromone is one such privileged scaffold that has been exploited for designing pharmacologically active analogs. The molecular hybridization technique combines the pharmacophoric features of two or more bioactive compounds to avail a better pharmacological activity in the resultant hybrid analogs. The current review summarizes the rationale and techniques involved in developing hybrid analogs of chromone, which show potential in fields of obesity, diabetes, cancer, Alzheimer's disease and microbial infections. Here the molecular hybrids of chromone with various pharmacologically active analogs or fragments (donepezil, tacrine, pyrimidines, azoles, furanchalcones, hydrazones, quinolines, etc.) are discussed with their structure-activity relationship against above-mentioned diseases. Detailed methodologies for the synthesis of corresponding hybrid analogs have also been described, with suitable synthetic schemes. The current review will shed light on various strategies utilized for the design of hybrid analogs in the field of drug discovery. The importance of hybrid analogs in various disease conditions is also illustrated.


Assuntos
Química Farmacêutica , Cromonas , Cromonas/química , Donepezila , Descoberta de Drogas , Relação Estrutura-Atividade , Tacrina/química
17.
J Biomol Struct Dyn ; 41(22): 13211-13227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013977

RESUMO

Amyloid-ß (Aß) aggregation and ß-amyloid precursor protein cleaving enzyme 1 (BACE1) are the potential therapeutic drug targets for Alzheimer's disease (AD). A recent study highlighted that tacrine-benzofuran hybrid C1 displayed anti-aggregation activity against Aß42 peptide and inhibit BACE1 activity. However, the inhibition mechanism of C1 against Aß42 aggregation and BACE1 activity remains unclear. Thus, molecular dynamics (MD) simulations of Aß42 monomer and BACE1 with and without C1 were performed to inspect the inhibitory mechanism of C1 against Aß42 aggregation and BACE1 activity. In addition, a ligand-based virtual screening followed by MD simulations was employed to explore potent new small-molecule dual inhibitors of Aß42 aggregation and BACE1 activity. MD simulations highlighted that C1 promotes the non aggregating helical conformation in Aß42 and destabilizes D23-K28 salt bridge that plays a vital role in the self-aggregation of Aß42. C1 displays a favourable binding free energy (-50.7 ± 7.3 kcal/mol) with Aß42 monomer and preferentially binds to the central hydrophobic core (CHC) residues. MD simulations highlighted that C1 strongly interacted with the BACE1 active site (Asp32 and Asp228) and active pockets. The scrutiny of interatomic distances among key residues of BACE1 highlighted the close flap (non-active) position in BACE1 on the incorporation of C1. The MD simulations explain the observed high inhibitory activity of C1 against Aß aggregation and BACE1 in the in vitro studies. The ligand-based virtual screening followed by MD simulations identified CHEMBL2019027 (C2) as a promising dual inhibitor of Aß42 aggregation and BACE1 activity.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Benzofuranos , Humanos , Peptídeos beta-Amiloides/química , Precursor de Proteína beta-Amiloide , Tacrina/farmacologia , Secretases da Proteína Precursora do Amiloide , Ligantes , Ácido Aspártico Endopeptidases , Doença de Alzheimer/tratamento farmacológico , Simulação de Dinâmica Molecular , Benzofuranos/farmacologia , Fragmentos de Peptídeos/química
18.
J Enzyme Inhib Med Chem ; 38(1): 2192439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36950955

RESUMO

A series of OA-tacrine hybrids with the alkylamine linker was designed, synthesized, and evaluated as effective cholinesterase inhibitors for the treatment of Alzheimer's disease (AD). Biological activity results demonstrated that some hybrids possessed significant inhibitory activities against acetylcholinesterase (AChE). Among them, compounds B4 (hAChE, IC50 = 14.37 ± 1.89 nM; SI > 695.89) and D4 (hAChE, IC50 = 0.18 ± 0.01 nM; SI = 3374.44) showed excellent inhibitory activities and selectivity for AChE as well as low nerve cell toxicity. Furthermore, compounds B4 and D4 exhibited lower hepatotoxicity than tacrine in cell viability, apoptosis, and intracellular ROS production for HepG2 cells. These properties of compounds B4 and D4 suggest that they deserve further investigation as promising agents for the prospective treatment of AD.


Assuntos
Doença de Alzheimer , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Tacrina/farmacologia , Inibidores da Colinesterase/farmacologia , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade
19.
Chem Res Toxicol ; 36(3): 420-429, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36892569

RESUMO

Xanthotoxin (XTT) is a biologically active furanocoumarin widely present in foods and plants. The present study is designed to systematically investigate the enzymatic interaction of XTT with CYP1A2, along with pharmacokinetic alteration of tacrine resulting from the co-administration of XTT. The results showed that XTT induced a time-, concentration-, and NADPH-dependent inhibition of CYP1A2, and the inhibition was irreversible. Co-incubation of glutathione (GSH) and catalase/superoxide dismutase was unable to prevent enzyme inactivation. Nevertheless, competitive inhibitor fluvoxamine exhibited a concentration-dependent protective effect against the XTT-induced CYP1A2 inactivation. A GSH trapping experiment provided strong evidence for the production of epoxide or/and γ-ketoenal intermediates resulting from the metabolic activation of XTT. Furthermore, pretreatment of rats with XTT was found to significantly increase the Cmax and area under the curve of plasma tacrine relative to those of tacrine administration alone.


Assuntos
Citocromo P-450 CYP1A2 , Tacrina , Animais , Ratos , Citocromo P-450 CYP1A2/metabolismo , Interações Medicamentosas , Fluvoxamina/farmacologia , Metoxaleno/farmacologia , Tacrina/farmacocinética
20.
J Biomol Struct Dyn ; 41(24): 14952-14967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858484

RESUMO

A number of new biguanidine-sulfonamide derivatives (1-16) were synthesized and their structures were characterized by spectroscopic and analytical methods. Crystal structures of the compounds 1, 4, 8, 10 and 14 were determined by single crystal X-ray diffraction studies. X-ray crystallographic data showed the π-electron delocalization through the biguanide units. The AChE and BChE cholinesterase inhibitor, DPPH antioxidant and DNA/BSA binding properties of the synthesized compounds were evaluated. Results of cholinesterase inhibitory properties have shown that the compounds containing electron-withdrawing (-F, -Cl) groups have higher AChE/BChE inhibitory and antioxidant activities. Compound 3 showed higher BChE inhibitory activity than tacrine with IC50 value of 28.4 µM. The compounds interact with DNA via minor groove binding mode. The compounds with a naphthyl group in its structure strongly binds with DNA/BSA biomolecules.Communicated by Ramaswamy H. Sarma.


Assuntos
Antioxidantes , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Antioxidantes/química , Acetilcolinesterase/química , Tacrina/química , Sulfanilamida , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...